Helical repeat of DNA in the nucleosome core particle.

نویسندگان

  • R Negri
  • M Buttinelli
  • G Panetta
  • V De Arcangelis
  • E Di Mauro
  • A Travers
چکیده

Although the crystal structure of nucleosome core particle is essentially symmetrical in the vicinity of the dyad, the linker histone binds asymmetrically in this region to select a single high-affinity site from potentially two equivalent sites. To try to resolve this apparent paradox we mapped to base-pair resolution the dyads and rotational settings of nucleosome core particles reassembled on synthetic tandemly repeating 20 bp DNA sequences. In agreement with previous observations, we observed (1) that the helical repeat on each side of the dyad cluster is 10 bp maintaining register with the sequence repeat and (2) that this register changes by 2 bp in the vicinity of the dyad. The additional 2 bp required to effect the change in the rotational settings is accommodated by an adjustment immediately adjacent to the dyad. At the dyad the hydroxyl radical cleavage is asymmetric and we suggest that the inferred structural asymmetry could direct the binding of the linker histone to a single preferred site.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wrapping of genomic polydA.polydT tracts around nucleosome core particles.

Five human clones containing genomic regions of polydA have been isolated by their ability to form intermolecular triple helices with agarose cross-linked polyU. All of these clones contain Alu repetitive DNA sequences. End-labelled DNA fragments containing these sequences have been successfully reconstituted onto nucleosome core particles by salt exchange. The structure of these has been exami...

متن کامل

Computer simulation of the 30-nanometer chromatin fiber.

A new Monte Carlo model for the structure of chromatin is presented here. Based on our previous work on superhelical DNA and polynucleosomes, it reintegrates aspects of the "solenoid" and the "zig-zag" models. The DNA is modeled as a flexible elastic polymer chain, consisting of segments connected by elastic bending, torsional, and stretching springs. The electrostatic interaction between the D...

متن کامل

An All-Atom Model of the Chromatin Fiber Containing Linker Histones Reveals a Versatile Structure Tuned by the Nucleosomal Repeat Length

In the nucleus of eukaryotic cells, histone proteins organize the linear genome into a functional and hierarchical architecture. In this paper, we use the crystal structures of the nucleosome core particle, B-DNA and the globular domain of H5 linker histone to build the first all-atom model of compact chromatin fibers. In this 3D jigsaw puzzle, DNA bending is achieved by solving an inverse kine...

متن کامل

Statistical investigation of position-specific deformation pattern of nucleosome DNA based on multiple conformational properties

The histone octamer induced bending of DNA into the super-helix structure in nucleosome core particle, is very unique and vital for DNA packing into chromatin. We collected 48 nucleosome crystal structures from PDB and applied a multivariate analysis on the nucleosome structural data. Based on the anisotropic nature of DNA structure, a principal conformational subspace (PCS) is derived from mul...

متن کامل

A DNA Structural Alphabet Distinguishes Structural Features of DNA Bound to Regulatory Proteins and in the Nucleosome Core Particle

We analyzed the structural behavior of DNA complexed with regulatory proteins and the nucleosome core particle (NCP). The three-dimensional structures of almost 25 thousand dinucleotide steps from more than 500 sequentially non-redundant crystal structures were classified by using DNA structural alphabet CANA (Conformational Alphabet of Nucleic Acids) and associations between ten CANA letters a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemical Society transactions

دوره 28 4  شماره 

صفحات  -

تاریخ انتشار 2000